In|Sync
REAL-TIME
ADAPTIVE TRAFFIC SIGNAL SYSTEM

PRODUCT CATALOG
v19.0 / January 2021

How In|Sync Works
Performance
Architecture
Models
Hardware
Software
HAWKEYE Radar
Communications
Deployment Process
Pricing

www.rhythmtraffic.com
Dear fellow traffic professionals,

In 1993, I started practicing as a traffic engineer with the City of Springfield, MO. I was working with PASSER 2 and TRANSYT-7F on a 486 DOS machine cranking out timing plans. (I am dating myself and a select few probably still remember the technologies.)

In 1995, you needed a dedicated pair of fiber-optic cable in order to bring video feed from a CCTV camera back to a Traffic Management Center. Technology has come a long way since then. Now, you can cram the entire data needs of a city into a pair of fibers!

Unfortunately, the traffic industry has not kept up with the changes in technology.

I didn’t for the life of me think that after 2.5 decades, I would be where I am today. Leading the traffic signal technology charge with a team of dreamers.

Passionate and relentless dreamers who are attempting to make a positive difference to the way traffic flow is managed in the United States and Canada.

Here is our promise to you.

We will not rest or passively stand by watching as lack of technology negatively affects traffic flow in North America.

We will not rest till every traffic professional in North America is provided with effective tools to manage their traffic signals.

This is our promise.

Very respectfully,

Reggie Chandra, Ph.D., PE
Lead Traffic Engineer + CEO
Table of Contents

4 The **In|Sync** Model
6 Benefits of **In|Sync**
8 Validation Studies
10 Testimonials
12 Our Partners
14 Architecture
16 Models

Hardware

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Main Components</td>
</tr>
<tr>
<td>20</td>
<td>**In</td>
</tr>
<tr>
<td>21</td>
<td>Equipment Panel</td>
</tr>
<tr>
<td>22</td>
<td>Standard Camera</td>
</tr>
<tr>
<td>23</td>
<td>Any Weather Camera</td>
</tr>
<tr>
<td>24</td>
<td>Thermal Detection Unit</td>
</tr>
<tr>
<td>26</td>
<td>HAWKEYE - 3D-UHD Radar</td>
</tr>
<tr>
<td>27</td>
<td>Connection Options</td>
</tr>
<tr>
<td>28</td>
<td>C1 Y-Cable</td>
</tr>
<tr>
<td>29</td>
<td>ABC Y-Cable</td>
</tr>
<tr>
<td>30</td>
<td>SDLC Intercept Module</td>
</tr>
<tr>
<td>31</td>
<td>Optional Components</td>
</tr>
<tr>
<td>32</td>
<td>Intercept Module</td>
</tr>
<tr>
<td>33</td>
<td>DIN Relay</td>
</tr>
<tr>
<td>34</td>
<td>Monitor/Keyboard</td>
</tr>
<tr>
<td>35</td>
<td>Pedestrian Integration</td>
</tr>
<tr>
<td>36</td>
<td>Software - **In</td>
</tr>
<tr>
<td>38</td>
<td>HAWKEYE Metrics</td>
</tr>
<tr>
<td>39</td>
<td>HAWKEYE Visualization</td>
</tr>
<tr>
<td>40</td>
<td>Communications</td>
</tr>
<tr>
<td>42</td>
<td>Deployment Timeline</td>
</tr>
<tr>
<td>44</td>
<td>Pricing</td>
</tr>
<tr>
<td>46</td>
<td>Warranty</td>
</tr>
<tr>
<td>47</td>
<td>Take Action Now</td>
</tr>
</tbody>
</table>
The In|Sync system delivers **40% more effectiveness** and performance measures than any existing system that optimizes traffic signal coordination. This fact has been proven by over three dozen independent validation studies.

These improvements can be attributed to the three distinct modules that seamlessly work together inside the In|Sync model.

Module #1: Digitize Traffic Signal Operations

All other existing traffic signal synchronization methodologies work off of the concept of common cycle lengths. A cycle length is an emulation of the dial in an electromechanical controller and therefore analog in nature.

The two major issues with common cycle lengths are that:

1. Vehicles have to wait on the side streets even when there is no one on the main street.
2. Signal transition. This happens when a signal skips phases and is in a state of chaos as it changes timing plans or after a signal preemption.

In|Sync does not use common cycles. Unlike all other existing traffic-signal models, it uses the concept of **states**.

A state is a pair of concurrent phases that can be green simultaneously without conflict. In|Sync differs from the sequential and set nature of phases in a cycle, because it can invoke any state as and when needed.

The difference is very much like the difference between the old TV channel selector and the modern remote control. With the old, you had to click your way sequentially through each channel before you could select the channel you wanted. With the modern remote control, you can directly select the channel you want by typing its number.

Examples of states (phase pairs)

Example of a sequence

The benefit of having a digital architecture is that green time is not wasted serving empty phases and there is no transition between timing plans.
Module #2: Local Optimization

In|Sync uses a rule-based Artificial Intelligence (AI) algorithm to compute real-time green durations to vehicle demand at each local intersection.

In|Sync knows the duration of wait times for every vehicle near the stop bar and the queue length for every lane. This information is collected every second in real-time. **In|Sync allocates a token** for every unique car that joins the queue. An additional token is given to each car that waits every 5 seconds.

The Greedy Algorithm changes the traffic signal light status to minimize the number of tokens issued. Thus, the local optimizer considers the number of cars waiting (real-time demand) and how long they have been waiting (delay). This patented algorithm does not use out-dated Webster-equation based modeling and is proven to produce unparalleled results in the field.

Module #3: Global Optimization

In|Sync guarantees coordination between traffic signals (even unevenly spaced traffic signals) without increasing side street delay using a concept called "Time Tunnels."

Time tunnels are created throughout the corridor (or grid network) with the slope of the tunnel indicating the speed of travel between traffic signals.

The scheduling of green for the coordinated phases are the top priority for the **In|Sync** model. The coordinated phases are guaranteed to be green along the speed line and all other movements are scheduled around this.

The point of initiation of green for the coordinated phases are the only fixed points in the signal operation and all other points in time are floating. The tunnels can have variable duration based on demand or can be programmed to have a minimum green duration. The tunnels can be truncated based on demand, the green durations for various phases are based on the Greedy Algorithm, and the time-between-tunnels can vary as well. All of these processes happen in real-time.

In|Sync Model Captured in One Sentence

The **In|Sync** model gives you the power to turn your coordinated movements green when you want them to be green and the rest of the time the signal operates in free/actuated mode (with the local optimizer running the Greedy Algorithm).
Benefits of In	Sync				
1. **Proven to reduce crashes by 15%-30%**	**2.** **Proven to reduce delay by 73%**				
Multiple independent validation studies have proven that In	Sync reduces crashes significantly through the corridor. The studies show that angular crashes as well as rear-end crashes are reduced.	Studies have proven that In	Sync significantly decreases main street delay by enhancing progression and reduces side street delay by reducing the wait times and queues (Local Optimizer).		
3. **In	Sync is compatible with all existing hardware (cabinets and controllers) and software (central system software)**	**4.** **Vehicle emissions and fuel consumption reduce by 34%**			
In	Sync is highly versatile and can be configured for any controller or cabinet available on the market.	The impact to the environment and reliance on fossil fuels are immediate and impressive. Agencies that are combating air pollution are deploying In	Sync as a solution to improving air quality.		
5. **Proven to reduce vehicle stops by 80%**	**6.** **In	Sync does not require installation of additional vehicle detectors**			
In	Sync’s Global Optimizer creates guaranteed time tunnels between traffic signals. The digital architecture is capable of creating unparalleled progression between traffic signals.	In	Sync comes with its own vehicle detection and data collection system. It is a complete package without the need for installing additional detection devices.		
7. **In	Sync is the ONLY real-time adaptive traffic signal system in the market**	**8.** **Proven to consume the least amount of human intervention and staff time**			
In	Sync provides real-time analysis and operations. Its dynamic optimization algorithms serve traffic based on real-time demand and delay analysis. Thus In	Sync makes adjustments to green splits, sequences and time between tunnels, instantly.	The adoption rate of In	Sync in the USA proves this point. Agencies without sufficient and dedicated staffing for traffic signal operations select In	Sync to manage their traffic signal operations.
21. ZOO Interchange Adaptive Signal System. WIS 100 In|Sync Adaptive Signal Study. (2013). TranSmart Technologies
Performance

The #1 Adaptive Traffic Signal System in the U.S.

In|Sync is a real-time adaptive traffic signal control solution. It is deployed by more traffic agencies in the United States than any other adaptive technology. This is because the patented, award-winning In|Sync system enables traffic signals to synchronize in real-time.

Numerous independent studies from various engineering firms confirm that In|Sync delivers measurable benefit several times greater than other adaptive traffic control solutions and other approaches to signal synchronization.

By combining real-time data collection with real-time signal optimization, it is proven that In|Sync dramatically reduces stops, delays, travel time, fuel consumption, vehicle emissions and most importantly, crashes.

Independent Validation of In|Sync Performance

Independent studies from engineering firms and universities confirm In|Sync delivers measurable benefits several times greater than other adaptive systems and other approaches to signal synchronization.

The third-party organizations that have evaluated In|Sync include:

- AECOM (Farmington, NM)
- Atkins
- DKS Associates
- HDR, Inc.
- Kimley-Horn and Associates
- Kittelson & Associates
- Lee Engineering
- MRIGlobal
- Olsson Associates
- Pennoni Associates Inc.
- Rahall Transportation Institute, Marshall University
- Dr. Aleksandar Stevanovic, Florida Atlantic University
- TJKM Transportation Consultants
- Virginia Center for Transportation Innovation & Research (Virginia DOT)
- University of Florida Transportation Institute
- University of Kentucky Transportation Center

For more information on the system’s intelligence, model and performance and to access these complete before-and-after studies, please visit rhythmtraffic.com/resources.
<table>
<thead>
<tr>
<th>Community Source</th>
<th>Reduced Stops</th>
<th>Reduced Delay</th>
<th>Reduced Travel Time</th>
<th>Reduced Fuel Consumption</th>
<th>Reduced Emissions</th>
<th>Increased Average Speed</th>
<th>Annual Savings to Motorists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longmont, CO CDOT, CO, 2018</td>
<td>41%</td>
<td>52%</td>
<td>22%</td>
<td>6%</td>
<td>N/A</td>
<td>27%</td>
<td>$5.8 Million</td>
</tr>
<tr>
<td>Columbia, MO MoDOT, MO, 2010</td>
<td>74%</td>
<td>58%</td>
<td>20%</td>
<td>N/A</td>
<td>N/A</td>
<td>25%</td>
<td>$1.9 Million</td>
</tr>
<tr>
<td>Columbia Cty, GA Columbia County, GA, 2012</td>
<td>71%</td>
<td>72%</td>
<td>29%</td>
<td>15%</td>
<td>20%</td>
<td>54%</td>
<td>$2.9 Million</td>
</tr>
<tr>
<td>Farmington, NM AECOM, 2015</td>
<td>64%</td>
<td>39%</td>
<td>14%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>$1.1 Million</td>
</tr>
<tr>
<td>Greeley, CO Atkins, 2012</td>
<td>43%</td>
<td>25%</td>
<td>10%</td>
<td>4%</td>
<td>N/A</td>
<td>12%</td>
<td>$1.3 Million</td>
</tr>
<tr>
<td>Lee’s Summit, MO MRIGlobal, 2010</td>
<td>73%</td>
<td>59%</td>
<td>23%</td>
<td>10%</td>
<td>19%</td>
<td>27%</td>
<td>N/A</td>
</tr>
<tr>
<td>Mountain View, CA TJKM Transportation Consultants, 2016</td>
<td>40%</td>
<td>39%</td>
<td>28%</td>
<td>N/A</td>
<td>N/A</td>
<td>54%</td>
<td>N/A</td>
</tr>
<tr>
<td>Mt. Pleasant, SC HDR, 2011</td>
<td>58%</td>
<td>56%</td>
<td>23%</td>
<td>N/A</td>
<td>N/A</td>
<td>25%</td>
<td>N/A</td>
</tr>
<tr>
<td>Pinellas Cty, FL Transportation Institute, UF, 2017</td>
<td>N/A</td>
<td>21%</td>
<td>16%</td>
<td>N/A</td>
<td>N/A</td>
<td>13%</td>
<td>N/A</td>
</tr>
<tr>
<td>Salinas, CA TJKM Transportation Consultants, 2011</td>
<td>66%</td>
<td>72%</td>
<td>42%</td>
<td>N/A</td>
<td>N/A</td>
<td>70%</td>
<td>$1.7 Million</td>
</tr>
<tr>
<td>San Diego, CA Urban Systems Associates, Inc., 2014</td>
<td>59%</td>
<td>N/A</td>
<td>17%</td>
<td>27%</td>
<td>N/A</td>
<td>17%</td>
<td>N/A</td>
</tr>
<tr>
<td>San Ramon, CA DKS Associates, 2010</td>
<td>45%</td>
<td>45%</td>
<td>25%</td>
<td>16%</td>
<td>38%</td>
<td>N/A</td>
<td>$1.3 Million</td>
</tr>
<tr>
<td>Springdale, AR City of Springdale, AR, 2010</td>
<td>88%</td>
<td>79%</td>
<td>35%</td>
<td>19%</td>
<td>28%</td>
<td>56%</td>
<td>$5.1 Million</td>
</tr>
<tr>
<td>State of Virginia VCTR, 2015</td>
<td>68%</td>
<td>NA</td>
<td>37%</td>
<td>39%</td>
<td>N/A</td>
<td>59%</td>
<td>$33.4 Million</td>
</tr>
<tr>
<td>Topeka, KS City of Topeka, KS, 2011</td>
<td>73%</td>
<td>67%</td>
<td>41%</td>
<td>27%</td>
<td>32%</td>
<td>73%</td>
<td>$2.1 Million</td>
</tr>
<tr>
<td>Upper Merion, PA Pennoni Associates, 2010</td>
<td>23%</td>
<td>32%</td>
<td>26%</td>
<td>N/A</td>
<td>N/A</td>
<td>39%</td>
<td>$795,000</td>
</tr>
<tr>
<td>Volusia Cty, FL Aleksandar Stevanovic, PhD, PE, and Milan Zlatkovic, PhD, 2012</td>
<td>9%</td>
<td>18%</td>
<td>18%</td>
<td>N/A</td>
<td>NA</td>
<td>5%</td>
<td>NA</td>
</tr>
<tr>
<td>Washington Cty, OR Kittelson & Associates, Inc., 2012</td>
<td>N/A</td>
<td>N/A</td>
<td>20%</td>
<td>39%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Wauwatosa, WI TranSmart Technologies, Inc., 2013</td>
<td>32%</td>
<td>28%</td>
<td>10%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>$1.3 Million</td>
</tr>
<tr>
<td>Wichita, KS City of Wichita, KS, 2011</td>
<td>83%</td>
<td>66%</td>
<td>29%</td>
<td>21%</td>
<td>30%</td>
<td>45%</td>
<td>$975,000</td>
</tr>
<tr>
<td>Hillsboro, OR Kittelson & Associates, Inc., 2012</td>
<td>NA</td>
<td>9%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
"Since the new signals were installed, we’ve seen travel times reduced by as much as 25% during rush hour. We’ve also seen the number of stops at these traffic signals decrease by as much as 53%, depending on the signal. We have residents and commuters who travel this corridor every day — and they’ve definitely noticed an improvement."

Kevin Faulconer
Mayor of San Diego, CA

"The results of their equipment is instant. The minute you turn it on the results are there. Within five minutes of turning on our initial system traffic completely changed on our main corridor."

Matt Schlachter, PE
Deputy County Administrator, Construction & Maintenance | Columbia County, GA

"This year it seemed to be a much smoother (traffic) flow than we’ve had before."

Randy Tennison
Senior General Manager for Jordan Creek Town Center | West Des Moines, IA

"Everything we’ve been hearing about In|Sync is positive...which is always good as we get less calls, and that generally means your system is working pretty good."

Justin Hall
Public Works Division Manager | Winchester, VA

"It’s real-time! When you have an influx of traffic, it takes care of that traffic immediately!"

Jim Dickinson, PE
Principal Engineer - Traffic | West Des Moines, IA

"The number of stops is way down, the congestion is way down, and it’s a lot safer."

Linda Voss, PE
Traffic Engineer (fmr) | Topeka, KS

"It’s not like a traditional signal where the main line is first, then the turns. Here, it’s going to decide it’s easier for me to serve the left turn movement before I let everyone else through."

Alex Martinez
Senior Traffic Studies Specialist MoDOT | Kansas City, MO

"Tomorrow’s technology is here today, so let’s see what it can do. In|Sync has proved to be something worth your time and investment."

Larry Haas, PE
Traffic Operations Engineer (fmr), CDOT | Greeley, CO

"We got rave reviews not only from the public officials, but from the motorists as well."

Ashwin Patel, PE
District Traffic Engineer, Pennsylvania DOT | Philadelphia, PA

"We have seen a clear improvement in traffic flow, and we anticipate a significant reduction in crashes. Thanks for a job well done."

Donald DeBerry, PE
City Transportation Engineer | Lynchburg, VA

"The system is doing a great job of moving traffic through the corridor."

Dub Janczys
Signalization Supervisor (fmr) | Springdale, AR

"The system itself is very smart and addresses issues as they come up."

Brad Morrison
Transportation Director | Mt. Pleasant, SC

"It’s like having several [extra] traffic engineers on staff."

Glen Bollinger, IMSA3
Traffic Engineer (fmr) | Augusta, GA

"There are many time periods and commuters that are benefiting tremendously."

Eric Kinard
Signals and Congestion Management Supervisor, Penn DOT District 8 | Harrisburg, PA

"They were there every step of the way in telling us what we would need. They were incredibly helpful in working with the different vendors."

Eric Bracke, PE, PTOE
City Traffic Engineer (fmr) | Greeley, CO
“Putting the adaptive system in, we gained efficiency and reduced the cost. It was a win-win, no doubt about it.”
Bret Hodne
Public Works Director | West Des Moines, IA

“We found that In|Sync significantly improved operations on the corridors, and we typically saw improvement in main line travel time. We also saw improvement on travel time reliability. On the safety side, we looked at 47 intersections around the state. On average, we saw a significant reduction of 17% in total crashes.”
Michael D. Fontaine, Ph.D., PE
Associate Director for Safety, Operations, and Traffic Engineering, VTRC | Charlottesville, VA

“In|Sync was the first system that we saw that had a whole new approach... And we feel that it’s the best adaptive traffic control solution currently on the market.”
Justin Schlaefli, PE, TE, PTOE
President, Urban Systems Associates | San Diego, CA

“The installation of these new adaptive traffic signals means less time spent on the road and more time for commuters to spend with their families. Residents are catching more green lights than ever before and the community is thrilled about it.”
Lorie Zapf
City Council Member | San Diego, CA

“Since In|Sync was installed, the report shows, we have a 90% reduction in stops, travel time has improved by 30%, fuel consumption is down 20%, and emissions (are) down 30%. I’m impressed.”
Tom Evans, PE, PTOE
District Traffic Engineer (fmr), MoDOT | Kansas City, MO

“When cars stop less often, the likelihood for crashes also decreases. More smoothly flowing traffic makes for safer commutes and a healthier community.”
Matt Burns
Police Chief | Sioux Falls, SD

“I looked into it, and what attracted me the most was that it was real time coordination. It’s just unbelievable – I drive from there every day now.”
Gigi O’Donnell
Traffic Signal Supervisor | Charlottesville, VA

“This technology is different than any other system operating today. It addresses limitations and deficiencies that nearly every traffic control system has. For a long time, traffic engineers have been hoping for a significant innovation in traffic control and here it is.”
Matt Selinger, PE, PTOE
Transportation Program Manager | Omaha, NE

“Since the In|Sync system has been put in, I might not get stopped one time in a whole series of signals, which to me is phenomenal!”
Eddie George
Traffic Supervisor | Aiken, SC

“Any time you call them, they are there to help and guide you step-by-step.”
Charles DeVitis, IMSA3
Traffic Signal Supervisor | Upper Merion Township, PA

“Traffic flow has improved and is at least 40% more efficient.”
Terry LaFleur
Communications Systems Manager | Beaumont, TX

“Unlike older technologies, In|Sync can adjust to immediate changes in traffic... In|Sync looks at exactly what is currently happening and immediately adjusts to an unexpected change in traffic. It’s impressive to see how quickly the system adapts.”
Bill Henry, PE
Traffic Engineering Manager | Little Rock, AR
Our Partners
In|Sync is compatible with all major makes and models of traffic controllers*

* - Any controller other than electro-mechanical
In|Sync accepts data from multiple sources to analyze traffic conditions at the intersection and along the corridor every second.

The In|Sync Processor, installed in the traffic cabinet at each intersection, constantly decides how to best optimize traffic flow at the intersection in real-time, while also coordinating progression along the corridor. In|Sync does not depend on a central server; rather, intelligence resides at each cabinet and interacts with the corridor’s network of all In|Sync Processors.

Inputs Layer

Real-time, Artificial Intelligence-based Optimizer Layer

The In|Sync Processor, installed in the traffic cabinet at each intersection, constantly decides how to best optimize traffic flow at the intersection in real-time, while also coordinating progression along the corridor. In|Sync does not depend on a central server; rather, intelligence resides at each cabinet and interacts with the corridor’s network of all In|Sync Processors.

Auxiliary Equipment Layer

These components provide the power, Ethernet and intra-cabinet connectivity that In|Sync requires. Rhythm Engineering provides one-on-one guidance to help you choose the auxiliary components that best integrate with your existing equipment and support your adaptive traffic control goals.

Your Traffic Controller and Signals

Your traffic controller runs in free mode so it can accept calls from In|Sync. In|Sync enables your traffic signals to adapt to real-time demand. In|Sync is compatible with all models of traffic signal controllers.
Comparison of In|Sync Models

In|Sync

- Video detection data collection provided by Rhythm Engineering

In|Sync: HAWKEYE

- Radar-based detection with context camera provided by Rhythm Engineering

Vehicle Detection

- Monitor live camera views of your intersections via any web browser

Benefits

- Monitor live camera views of each intersection via web browser with the included context camera. Highly accurate radar detection provides real time queue analysis and a full suite of high-resolution data
All In|Sync systems include the following (per intersection):

- **1 In|Sync Processor**
 - Up to 4 detection units for vehicle data collection
 - 1 Equipment Panel for power and Ethernet connectivity
 - Connection to controller (choose from C1 Y-Cable, ABC Y-Cable, SDLC Intercept Module)
- **In|Traffic** software and access to the In|Sync WebUI to configure, monitor and manage traffic flow
- Two-year hardware warranty and one-year software warranty
- One year of remote technical support available 24/7/365

In|Sync: FUSION **In|Sync**: FIRE **In|Sync**: THERMAL

Vehicle Detection

- We integrate both our detection and your existing detection devices
- A specialized enclosure offering additional thermal elements to In|Sync’s cameras for use in the harshest winter environments
- Uses thermal imaging for vehicle detection

Benefits

- Increased reliability by using multiple detection sources
- Additional heating elements effectively prevent the accumulation of ice or snow in camera lenses
- Thermal imaging and heat-signature detection eliminates the effect of inclement weather and conditions such as sun glare, shadows, rain, fog
Overview

The processor is the heart of the In|Sync system. This environmentally hardened computer, installed in the traffic cabinet at each local intersection, holds all the artificial intelligence of the adaptive system. The In|Sync Processor gathers detection information from all sources available (cameras, loops, pedestrian push-buttons, etc.) and then determines the service priority for each approach. The processor places only two concurrently serviceable phases (state) to the existing traffic controller to actuate signal phases.

As a modern, digital state machine, the processor can choose whichever state will best serve traffic demand. In|Sync then sends the appropriate detector call to your controller and the signals adapt to traffic demand immediately. In|Sync transforms the complexity of constantly changing traffic demand into simple decisions made every second, resulting in a noticeable difference to you and your motorists.

Features

- Computer processing of connected detectors (i.e., radar or camera unit)
- Remote monitoring / configuration via a web interface
- Tied to the cabinet, enabling monitoring of light status
- Password protection for access on shared networks with multiple levels of credentials
- Automatic per-phase and per-lane traffic counts
- Advanced emergency / fog mode based on historical data with In|Sync cameras
- VGA video port for monitoring at cabinet
- 2 USB ports for keyboard/mouse and field upgrades
- 10/100 Mbps Ethernet port
- Compatible with all types of traffic controllers and cabinets for fast, easy installation
- Flexible and extensive input/output options for advanced functionality
In|Sync Processor Connectivity

Power
- **Operating:** 24VDC, min 150 W
- **Non-Operating:** -40°F to 165°F (-40°C to 74°C)

Weight
- 7 lb (3.2 kg)

Temperature
- **Operating:** -40°F to 165°F (-40°C to 74°C)
- **Non-Operating:** -40°F to 185°F (-40°C to 85°C)

Humidity
- **Operating:** 10% to 90% non-condensing
- **Non-Operating:** 5% to 95% non-condensing

Dimensions
- **330s-STYLE:** 19” STANDARD RACK MOUNTABLE
 - 16.75” W × 9.5” D × 3.25” T
 - (426mm W × 241mm D × 82.6mm T)

- **NEMA-STYLE:** SHELF MOUNTABLE
 - 5.9” W × 9.5” D × 10.8” T
 - (150mm W × 241mm D × 275.5mm T)
Overview

The Equipment Panel is the power and communications hub of the In|Sync system at each intersection. It provides an environmentally hardened DC power supply and an Ethernet switch, both of which support the In|Sync Processor and cameras. The Equipment Panel supports up to four cameras by default. Additional fifth camera support is provided by adding a fifth Ethernet Surge Protector and Fuse Holder.

More than 5 cameras will require an additional equipment panel.

Features

- Hardened 120 VAC to 24 VDC 600 watt power supply
- 100 Mbps unmanaged Ethernet switch
- Store-and-forward switching architecture
- 8 Ethernet networking ports
- DC+/DC- terminal blocks provide power to cameras
- Earth ground bar
- Lightning arrestors to provide surge protection
- 4-amp fuse block protects power to the cameras

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
<th>Operating Temperature</th>
<th>Humidity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 VAC; max 160W</td>
<td>7 lb (3.2 kg)</td>
<td>Operating: -40°F to 165°F (-40°C to 74°C)</td>
<td>Operating: 10% to 90% non-condensing</td>
<td>10” W x 13” D x 3” T (254mm W x 330mm D x 76mm T)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Operating: -40°F to 185°F (-40°C to 85°C)</td>
<td>Non-Operating: 5% to 95% non-condensing</td>
<td></td>
</tr>
</tbody>
</table>
Overview

Optical Detection Camera with Standard Enclosure

In|Sync video detection uses high-performance Bosch IP digital cameras to measure traffic occupancy, queue length and delay in real-time. Each camera is delivered to you, ready for installation in a weatherproof enclosure, and connects to both power and Ethernet network in just seconds. You have direct access to camera views and settings via the In|Sync WebUI.

Features

Camera - Bosch NBN-50022
- 1080p IP Box, Day/Night, H.264
- F1.4 Lens, 5-50mm Focal Length
- Motion/Tamper/Audio Detection

Enclosure - Bosch UHO-HBGS-11
- Hinged side opening for easy installation and camera setup
- Window defroster with self-cleaning glass
- IP66, NEMA-4X rating

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 VDC, max 9W</td>
<td>1.19 lb (540g)</td>
<td>Operating: -40°F to 165°F (-40°C to 74°C)</td>
<td>20% to 80% non-condensing</td>
<td>2.83" x 2.36" x 5.33" (72.0 x 59.9 x 135.4 mm)</td>
</tr>
<tr>
<td>24 VDC, max 45W</td>
<td>6.8 lb (3.2 kg)</td>
<td>Non-Operating: -50°F to 185°F (-45.5°C to 85°C)</td>
<td></td>
<td>5" x 6.7" x 18.9" (126.5 x 171.3 x 480 mm) including sunshield</td>
</tr>
</tbody>
</table>
Overview

Optical Detection Camera with Ring-of-Fire De-icing/Defrosting Enclosure

In|Sync:FIRE is a rugged, heavy-duty, heated camera housing that provides additional protection to *In|Sync*’s video detection cameras in the harshest winter environments. The enclosure melts snow and ice, eliminating obstructions that can block the camera’s view.

Features

Camera - Samsung SNZ-6320

- 4.44 – 142.6 mm (32x) optical zoom, 16x digital zoom

Enclosure - Dotworkz ST-RF-MVP

- Ring-of-Fire de-icing/defrosting system removes the snow and ice that would normally obstruct a camera’s view
- Housing seals keep out all moisture and dust
- Enables IP cameras to operate in freezing locations, with temperatures down to -60°C
- Thermostatically controlled de-icing and heating unit keeps the internal electronics at ideal operating temperature
- Case is designed to be “vandal tough” to protect valuable electronics from damage and theft
- Heavy-duty, non-metallic, non-corrosive, flame-resistant, Polycarbonate Thermal Plastic alloy case
- Exceeds IP66 rating

Power Weight Temperature Humidity Dimensions

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 VDC, max 9W</td>
<td>1.19 lb</td>
<td>-40°F to 165°F</td>
<td>20% to 80% non-condensing</td>
<td>2.83” x 2.36” x 5.33” (72.0 x 59.9 x 135.4mm)</td>
</tr>
<tr>
<td>24 VDC, max 50W</td>
<td>11 lb (5 kg)</td>
<td>-76°F to 185°F</td>
<td></td>
<td>5” x 6.7” x 18.9” (126.5 x 171.3 x 480 mm) including sunshield</td>
</tr>
</tbody>
</table>
Overview

FLIR ITS-Series Thermal Detection Camera

In|Sync::THERMAL brings mission-critical military-grade technology to adaptive traffic signal solutions. Even in poor visibility conditions - including low light, fog, glare, rain, shadows and low vehicle-to-pavement contrast - **In|Sync::THERMAL** provides accurate and reliable imaging to help improve traffic flow. By using heat signatures, the system can detect vehicles that might escape traditional video detection.

Features

Camera - FLIR ITS-Series

- Maintenance free uncooled microbolometer detector that produces high quality thermal images on which the smallest of details can be seen
- 4 camera options for different focal lengths and fields of view for each approach at each intersection (FC-344-ID, FC-332-ID, FC-324-ID, and FC-317-ID)
- Support for extremely harsh temperature environments, operating between -50°C and +70°C
- IP66 & IP67 rated
- Allows for images to be viewed in all conditions, day or night, in practically any weather
- Thermal sensor is not hindered by reflections of sun glare, shadows, headlights, or wet pavement

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 VDC/24 VAC(max 32W)</td>
<td>4.8 lb (2.2 kg)</td>
<td>Operating: -58°F to 158°F (-50°C to 70°C)</td>
<td>0% to 95%</td>
<td>10.8” x 5.4” x 4.4” (275 x 137 x 102 mm)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-Operating: -58°F to 185°F (-50°C to 85°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D-UHD Radar

In|Sync: HAWKEYE

HAWKEYE is the best vehicle detection system available. Its list of benefits for use at intersections controlled by traffic signals include the following:

Close to 100% detection accuracy. No machine is perfect 100% of the time, but 3D-UHD Radar Technology comes close. One of the most prevalent vehicle detection technologies was video detection, but something as simple as condensation on the lens could disrupt how data was interpreted. Neither weather, time of day, position of the sun, shadows on the ground, nor any other factor limits radar devices, as they separate and classify objects by their angle of travel, speed of travel, and range from the source.

High accuracy of count detection. 3D-UHD Radar Detection uses at least 24 synchronous beams that track in three dimensions. Accurate vehicle detection is essential for traffic engineers to create manual signal timing plans and adaptive signal operations. Without proper data collection, it is impossible to accurately manage traffic flow. The constant collection and analysis of critical data points such as the highest volume time of day and highest volume days of the week for vehicle travel in specific directions can allow traffic engineers to be better equipped to synchronize multiple signals for optimum traffic flow.

Detection range of 1,000 feet. 3D-UHD Radar Detection Technology can identify vehicles approaching an intersection from around 1,000 feet (300m) away, regardless of weather conditions or time of day. The average driver using low-beam headlights at night has a range of vision of about 467 feet (140m). This means **HAWKEYE** can see vehicles approaching at night before the driver can see the traffic signals.
Features

3D-UHD Radar Sensor

- Stop Bar + Advance detection in a single sensor
- 3D Object Tracking with UHD Resolution, differentiating and tracking objects in speed, range, and angle
- Up to 8 lanes of detection (depending on the mounting location)
- Selectable Maximum Detection Range of 558 ft. (170m) or 1115 ft. (340m)
- Selectable Minimum Detection Range of 1.5 m or 3.0 m
- < 54ms refresh rate of up to 126 tracked objects
- -50 degree to +50 degree Azimuth Angle field of view
- Range Accuracy: < +/- 9.8 in. (0.25 m)
- Speed Accuracy: < +/- 0.63 mph (0.28 m/sec)
- Frequency: 24 to 24.25GHz K Band

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-32 VDC, 12W typical</td>
<td>2.8 lb (1.29 kg)</td>
<td>Operating: -40°F to 165°F (-40°C to 74°C)</td>
<td>IP67</td>
<td>8.4” x 6.1” x 1.5” (212.6 mm x 154.6 mm x 38.15 mm)</td>
</tr>
</tbody>
</table>
Connection Options

Overview

To best integrate with your traffic controller, cabinet, and other existing equipment, we provide five different connection options to the In|Sync Processor.

C1 Y-Cable

The C1 Y-Cable is the custom connection between a 170 or 2070 traffic controller (33X Cabinet) and the In|Sync Processor. It supports In|Sync and In|Sync:FUSION.

ABC Y-Cable

The ABC Y-Cable is the custom connection between a NEMA TS1 or TS2-Type 2 traffic controller and the In|Sync Processor. It supports In|Sync and In|Sync:FUSION.

SDLC Intercept Module

The SDLC Intercept Module is the custom connection between a NEMA TS2-Type 1 or NEMA TS2-Type 2 traffic controller and the In|Sync Processor. It supports In|Sync and In|Sync:FUSION.
Overview

The C1 Y-Cable provides connection between a 170 or 2070 traffic controller and the In|Sync Processor. Using the C1 Y-Cable makes for fast, easy, error-free installation and allows you to integrate your existing detectors with the In|Sync system.

Features

- Heavy-duty die-cast DB25 connector shells
- Compatible with 170/2070 traffic controllers
- Uses standard 104-pin connection to C1 cable
- Uses minimal space in cabinet
- Available in mode-specific configuration

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
<th>Temperature Operating:</th>
<th>Humidity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>3 lb (1.3 kg)</td>
<td>-40°F to 165°F (-40°C to 74°C)</td>
<td>N/A</td>
<td>6 ft long</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-operating: -40°F to 185°F (-40°C to 85°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Overview

The ABC Y-Cable provides connection between a NEMA TS1 or TS2-Type 2 traffic controller and the In|Sync Processor. Using the ABC Y-Cable makes for fast, easy, error-free installation and allows you to integrate your existing detectors with the In|Sync system.

Features

- Standard A, B and C locking NEMA connectors
- Heavy-duty die-cast DB25 connector shells
- Compatible with NEMA TS1 or TS2-Type 2 traffic controllers
- Uses minimal space in cabinet
- Available in mode-specific configuration

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
<th>Temperature Operating</th>
<th>Humidity</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>3 lb (1.3 kg)</td>
<td>-40°F to 165°F (-40°C to 74°C)</td>
<td>N/A</td>
<td>6 ft long</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power</th>
<th>Temperature Non-operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>-40°F to 185°F (-40°C to 85°C)</td>
</tr>
</tbody>
</table>
SDLC Intercept Module

Overview

The SDLC Intercept provides connection between a NEMA TS1 or TS2-Type 2 traffic controller and the In|Sync Processor. Using the SDLC Intercept Module makes for fast, easy, error-free installation and allows you to integrate your existing detectors with the In|Sync system.

Features

- Compact, stand-alone box design easily sits on a shelf
- Supports standard NEMA TS2 SDLC and ITS connections
- Provides a switch for manually bypassing the intercept mode
- Contains an Ethernet port for 10/100 network connectivity
- Contains an RS-232 port and associated RJ12 connector for local serial access
- Compatible with the NEMA TS2-Type 1 and TS2-Type 2 traffic controllers
- Uses minimal space in cabinet
- Includes BIU cable
- Includes serial cable for SDLC Intercept module to In|Sync Processor communication
- Includes power cable for SDLC Intercept module

Power	Weight	Temperature	Humidity	Dimensions
12 to 48VDC | 1.4 lb (0.68 kg) | Operating: -40°F to 165°F (-40°C to 74°C) | Operating: 10% to 90% non-condensing | 1.75” W x 5.75” D x 8” T (44mm W x 146mm D x 203mm T)

Operating: -40°F to 185°F (-40°C to 85°C)
Non-Operating: 5% to 95% non-condensing
Overview

The Intercept Module allows In|Sync to accept non-standard detection inputs such as those from pedestrian push buttons, railroad crossings, transit system priority and emergency vehicle preemption.

Features

- Provides for eight field inputs and eight field outputs
- Provides a way to listen to and produce signals that are 12 VAC or 24 VDC referenced
- Compact, stand-alone box design easily sits on a shelf
- Optional bracket allows rack mounting
- Contains an RJ12 connector to connect to the In|Sync Processor
- Built-in fail-safes allow inputs to be passed through during communication or power failures
- Includes a serial cable

Power

<table>
<thead>
<tr>
<th>Power</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-30 VDC, max current: 250 mA</td>
<td>1.4 lb (0.68 kg)</td>
</tr>
<tr>
<td>Reverse Polarity Protection</td>
<td>ESD Protection</td>
</tr>
</tbody>
</table>

Temperature

<table>
<thead>
<tr>
<th>Operating</th>
<th>Non-Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating: -40°F to 165°F (-40°C to 74°C)</td>
<td>Non-Operating: -40°F to 185°F (-40°C to 85°C)</td>
</tr>
</tbody>
</table>

Humidity

<table>
<thead>
<tr>
<th>Operating</th>
<th>Non-Operating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating: 10% to 90% non-condensing</td>
<td>Non-Operating: 5% to 95% non-condensing</td>
</tr>
</tbody>
</table>

Dimensions

<table>
<thead>
<tr>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.75” W x 5.75” D x 8” T (44mm W x 146mm D x 203mm T)</td>
</tr>
</tbody>
</table>
Overview

The DIN Relay cycles power to the cameras, ensuring that a camera recovers if the network port loses its connection to the camera. This eliminates the need to be on-site to reset equipment that has “locked up.”

Features

- Pluggable contacts for easier installation
- Relay fuses to protect against over-current
- Self resetting crowbar over-voltage protection
- HTTPS, SSL, SSH with tighter security
- Internal event notifications
- Wired ethernet
- Snaps directly to DIN rail or bolts to panel
- LCD Display
- Relay switching power: 10 A at 125 VAC, Fused at 12 A
- Software controls

Power	Weight	Temperature	Humidity	Dimensions
12-48 VDC max 5.8 W | 2.7 lb (1.2 kg) | Operating: -40°F to 165°F (-40°C to 74°C) | N/A | 6.00” W x 4.25” D x 2.25” T (153mm W x 108mm D x 57mm T)

Non-Operating: -40°F to 185°F (-40°C to 85°C)
Monitor & Keyboard Set

Overview

The Monitor & Keyboard Set allows full monitoring and configuration of the system at the cabinet. The monitor has a resolution of up to 1024 x 600 (H x V) formatted. The standard USB keyboard comes with an integrated trackball for mouse emulation.

Features

Monitor: Lilliput FA1012-NP/C/T
- Screen size: 10.1”
- LED (16:9)
- Resistive touch panel
- Resolution: 1024x600
- Brightness: 250 cd/m²
- Dimensions: 53.5x162.5x35/65.5mm (with bracket)

Keyboard: Periboard-505 H Plus
- 12.4x5.8x1 inches mini size (315 x 147 x 20 mm)
- Built-in 0.55 inches optical trackball for easy control of mouse function
- Built-in 2 USB hubs
- 5.90 ft durable cable (1.8 m)

Power	Weight	Temperature	Humidity	Dimensions
Monitor | 12 VDC max 9W | Operating: -4°F to 140°F (-20°C to 60°C) | up to 90% non-condensing | 10” W x 6.4” T x 1.4”D (2.6” D with bracket) (253.5mm W x 162.5mm T x 35/66mm D)
Non-Operating: -40°F to 165°F (-40°C to 74°C) | 15.5 oz (0.44 kg) | Operating: 32°F to 104°F (0°C to 40 °C) | 10% to 85% non-condensing | 5.8” W x 12.4” D x 0.8” T (147mm W x 315mm D x 20mm T)
Non-Operating: 14°F to 140°F (-10°C to 60°C) | |

Keyboard | |

Temperature	-100°F	-50°F	0°F	50°F	100°F	150°F	200°F
-4°F | -50°F | 0°F | 50°F | 100°F | 150°F | 200°F
-20°C | -50°C | 0°C | 50°C | 100°C | 150°C | 200°C

Humidity | up to 90% non-condensing | 10% to 85% non-condensing
Pedestrian Integration

Overview

In|*Sync Pedestrian Integration* is required at any intersection that has or will have pedestrian signal indication.

The *In*|*Sync Pedestrian Integration* provides the benefit of incorporating pedestrian service into the operation of the intersection, regardless of cabinet architecture. Any necessary hardware (e.g., an intercept module) will be provided for no additional cost. With the *In*|*Sync Pedestrian Integration*, pedestrian calls are intercepted by the *In*|*Sync Processor*.

In|*Sync* then schedules pedestrian service and serves the pedestrian phase along with the respective vehicle phase, providing uninterrupted service to platoons of traffic and leveraging all the benefits of *In*|*Sync*’s local and global optimization.

Features

- Integrates with all existing pedestrian hardware
- Can be configured to provide pedestrian service multiple times and every time between tunnels
- Provides efficient pedestrian service with minimal impact on coordination
Overview

In|Traffic is a comprehensive, all-in-one software solution that integrates a wide array of traffic management tools into a simple yet powerful, intuitive and user-friendly console.

In|Traffic incorporates operational, monitoring and analytical components into one powerful web-based software. It allows traffic professionals to manage and configure all of their Rhythm Engineering solutions from one Central Command Console (C³) to mitigate traffic congestion.

- Configure any solution with ease
- Advanced, easy-to-use interface
- Advanced monitoring and data visualization
- Free with any Rhythm Engineering product purchase
In|Traffic Facts

Centralized Tool for All Operations and Analysis
Traffic professionals can manage and configure all Rhythm Engineering traffic signal systems from one centralized command console solution, using a single user interface. **In|Traffic** provides all the functionality necessary for performing a traffic engineer’s job.

Consolidates Device Configuration, Operations and Performance Metrics
In|Traffic integrates and simplifies the configuration of all equipment used at an intersection, and its built-in validation ensures configurations will work before they are sent to the field. **In|Traffic** also collects data from field devices for performance metrics, which are integral to determining how well a transportation system is running and where improvements can be made.

Collects and Synthesizes Traffic Management Data
In|Traffic continuously aggregates data from processors in the field and presents the data in meaningful graphs and tables for easy analysis. This field-level system information allows traffic engineers to easily identify trends, spot areas that require attention and take action on improvement measures.

Browser-Based Interface
Users can access **In|Traffic** from any device (Mac, PC, tablet or smartphone), in the field or in the office, using any standard web browser, allowing configuration changes to be made remotely. Any configuration changes made in the browser are fully synchronized with the central repository, preventing conflicts and double-data entry.

Encourages Creative Problem Solving
In|Traffic’s Time/Space Diagram allows engineers to run “what-if” scenarios to see the impact of configuration changes. Tweaking the offsets, durations and periods can be done directly in the diagram. Users can also use the program’s Sandbox mode to set up and configure management groups and experiment with different settings without making permanent changes to the database.
Overview

The In|Sync Web User Interface (WebUI) gives you live, interactive access to the traffic conditions on your In|Sync corridor. Watch camera views of every approach and access individual In|Sync Processors and traffic data using any internet browser — no special software required!

The WebUI provides a live feed from In|Sync cameras to any web browser. The multi-camera view, shown here, displays real-time video from all the approaches at a single intersection.

WebUI can be used to check the status of adaptive operations, monitor detector calls intercepted by In|Sync, monitor communications status and, if necessary, place manual calls or turn off adaptive traffic control. Traffic counts, delay and level of service data are stored automatically for 30 days and can be displayed in the WebUI. WebUI can archive historical data for future analysis.

Monitor all the cameras along a corridor, in one screen, using the Corridor View.
System Requirements

- **Device**: Any Internet-connected device (computer, tablet or smartphone) meeting the browser and display specifications below
- **Web Browser**: Internet Explorer 7 or later, Firefox 4 or later, or Chrome 9 or later
- **Display**: 1024x768 screen required to minimize scrolling; 1920x1280 recommended
- **Internet Speed**: 512Kbps or faster required; 1Mbps or faster recommended

The **WebUI** offers data-rich reporting on vehicle count, stop delay, and more. Additionally, it converts the traffic statistics into easy-to-read graphs and charts, such as this chart showing vehicle counts per phase over time.

The **WebUI**'s History Viewer shows green times allocated phasing and intersection information such as vehicle count, wait times, movements served, adaptive functionality and pedestrian calls. This allows you to determine the signal’s inputs and operations, historically at any given time.
Hawkeye ASPM/AFPM is a comprehensive solution for collecting and visualizing high-resolution data. It allows continuous monitoring of intersections, using a highly accurate, 3D-UHD Radar technology. The rich array of measures from the data intelligence module enables traffic engineers to manage traffic signals efficiently and pro-actively. Equipped with this data, traffic professionals are better placed to improve the travel experience for motorists.

HAWKEYE provides advanced data visualization per lane, movement, phase, approach or per intersection for the following metrics:

ARRIVALS
- Arrivals on Red/Green
- Purdue Coordination Diagram

DELAY AND LOS
- Delay/Vehicle/Phase
- Total Delay/Vehicle/Phase
- Level of Service/Approach
- Level of Service/Intersection

VOLUME
- Volume Approach/Lane/Phase
- Composition/Approach

OTHERS
- Average Speed
- Passed on Red
- Occupancy
- Headway
HAWKEYE Visualization

Hawkeye data visualization is a powerful tool, aiding in the decision-making process when the traffic practitioners are striving for operational efficiency. The set of performance measures, arranged on a dashboard or monitored individually, can be used for trend monitoring, stats comparison, project design, forecasting, and evaluations.

The **HAWKEYE** dashboard gives you an all-encompassing view of metrics, performance grid and live streaming from the radar. It is fully customizable and provides an easily digestible picture of the health of the monitored jurisdiction.
Communication Requirements

In|Sync requires reliable Ethernet communications between the intersections (interconnect). This enables real-time signal optimization and synchronization.

Establishing and maintaining communications is the agency’s responsibility and must be installed and verified prior to Rhythm Engineering’s on-site installation training.

Fiber-optic cable, Ethernet-over-copper, cell phone modems and wireless radios all work well with *In|Sync*. In fact, *In|Sync* can use and integrate different cabling types on the same corridor.

Ethernet repeaters are required when Ethernet cable runs from the cameras are greater than 320 ft (100 m).

Remote Access for Monitoring and Updating

Your *In|Sync* corridor, including all equipment such as *In|Sync* Processors and cameras, must be remotely accessible both to you and Rhythm Engineering for monitoring and updating purposes. There are two ways to achieve this – either by connection via cable or DSL to the Internet at one point along the corridor (Option 1) or by connecting directly via your existing network (Option 2).
Your agency must provide:

- A fully configured and installed router with VPN and firewall capabilities
- A bandwidth of 2 megabits per second (Mbps) download speed and 1 Mbps upload speed
- VPN access for at least four unique user accounts to Rhythm Engineering staff
- Static IP address assignments for each In|Sync network device with designated subnet and gateway (In|Sync Processors, Detection units, DIN Relays and Ethernet Repeaters). 10 IP addresses per intersection are desired, but 8 IP addresses per intersection are required.

The following ports must be opened for In|Sync:

- Port 80 or 443 TCP for WebUI to each In|Sync network device
- Port 3389 TCP for RDP access to each In|Sync Processor
- Port 25 for SMTP
- Port 123 for NTP
- Port 20000 and 445 TCP for In|Sync communications
- Port 943 for Silverlight policy to In|Sync cameras
- Port 554 for RTSP to In|Sync cameras
- Port 4520 for device control and streaming for ActiveX control to In|Sync cameras
Deployment Timeline

90 Days

Day 1

Prepare Corridor

- Order In|Sync
 - Order In|Sync with a purchase order or contract

Establish Communications

- Begin integration readiness checklist: provide corridor data and IP addresses, install communications and power/Ethernet cabling

- Verify corridor communications are operational, VPN access provided and readiness checklist completed

Agency

Rhythm Engineering

- **Order Parts**
 - Procure and test hardware components

- **Verify Communications**
 - Verify corridor communications and remote VPN access 2-3 weeks prior to on-site training

- **Begin Project**
 - Host project kick-off meeting to establish deployment timeline and clarify responsibilities

- **Capture Goals**
 - Host project goal meeting to capture your agency’s objectives
<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure Hardware</td>
<td>Engineers configure In</td>
</tr>
<tr>
<td>Installation Training</td>
<td>Technician on-site for three days of classroom and field training on installation, operation and maintenance</td>
</tr>
<tr>
<td>Prepare Controllers</td>
<td>Put traffic controllers in free mode to allow In</td>
</tr>
<tr>
<td>Adaptive Turn-On</td>
<td>Engineer on-site to perform adaptive turn-on, drive corridor with your agency and make adjustments as needed — your traffic signals are now fully adaptive</td>
</tr>
<tr>
<td>Monitor Corridor</td>
<td>Monitor corridors for 2-3 weeks and collaborate with your agency on final adjustments</td>
</tr>
<tr>
<td>Project Complete</td>
<td>Host project close meeting to confirm objectives were achieved</td>
</tr>
<tr>
<td>Complete Installation</td>
<td>Complete In</td>
</tr>
<tr>
<td>Ship Equipment</td>
<td>Ship In</td>
</tr>
</tbody>
</table>
Pricing

HARDWARE & SOFTWARE

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25,000</td>
<td>In</td>
</tr>
<tr>
<td>$900</td>
<td>Equipment Panel</td>
</tr>
<tr>
<td>$1,500</td>
<td>Cabinet Cabling/Connection</td>
</tr>
<tr>
<td>$35,000</td>
<td>In</td>
</tr>
<tr>
<td>$1,250</td>
<td>Equipment Panel</td>
</tr>
<tr>
<td>$1,500</td>
<td>Cabinet Cabling/Connection</td>
</tr>
<tr>
<td>$600</td>
<td>HAWKEYE Mounting Hardware per approach</td>
</tr>
<tr>
<td>$350</td>
<td>Junction Box per approach</td>
</tr>
<tr>
<td>$30,000</td>
<td>In</td>
</tr>
<tr>
<td>$40,000</td>
<td>In</td>
</tr>
</tbody>
</table>

OPTIONAL EQUIPMENT

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5,000</td>
<td>Pedestrian Integration</td>
</tr>
<tr>
<td>$5,000</td>
<td>In</td>
</tr>
<tr>
<td>$700</td>
<td>Keyboard & Monitor Kit</td>
</tr>
<tr>
<td>$12,500</td>
<td>In</td>
</tr>
<tr>
<td>$14,000</td>
<td>In</td>
</tr>
<tr>
<td>$18,500</td>
<td>In</td>
</tr>
<tr>
<td>$20,000</td>
<td>In</td>
</tr>
<tr>
<td>$750</td>
<td>Hawkeye Context Camera per approach</td>
</tr>
</tbody>
</table>

DEPLOYMENT SERVICES

<table>
<thead>
<tr>
<th>Price</th>
<th>Intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3,500</td>
<td>1 - 4 intersections</td>
</tr>
<tr>
<td>$5,000</td>
<td>5 - 9 intersections</td>
</tr>
<tr>
<td>$10,000</td>
<td>10 - 20 intersections</td>
</tr>
</tbody>
</table>

The services fee covers consulting time for training, on-site installation assistance, remote configuration and ongoing deployment support of your In|Sync.

SHIPPING & HANDLING

<table>
<thead>
<tr>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$150</td>
<td>Shipping (per intersection)</td>
</tr>
</tbody>
</table>

Other required items include:
- Camera mounting hardware, recommend CAT 6e (CAT 5e could be used if necessary), 14-3 Power cable, Ethernet repeaters and injectors. These may be purchased from Rhythm or from another vendor.

*Two-year hardware warranty, one-year software warranty, and one-year 24/7/365 remote technical support provided with system purchase.

** Note: All prices are in US dollars.
Sample Pricing

Sample investment for a 4-intersection corridor with In|Sync:HAWKEYE

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Sync:HAWKEYE</td>
<td>4</td>
<td>$35,000</td>
</tr>
<tr>
<td>Deployment Services</td>
<td>1</td>
<td>$3,500</td>
<td>$3,500</td>
</tr>
<tr>
<td>Equipment Panel</td>
<td>4</td>
<td>$1,250</td>
<td>$5,000</td>
</tr>
<tr>
<td>Cabinet Cabling/Connection</td>
<td>4</td>
<td>$1,500</td>
<td>$6,000</td>
</tr>
<tr>
<td>Junction Box</td>
<td>16</td>
<td>$350</td>
<td>$5,600</td>
</tr>
<tr>
<td>Hawkeye Mounting Hardware</td>
<td>16</td>
<td>$600</td>
<td>$9,600</td>
</tr>
<tr>
<td>Shipping & Handling</td>
<td>4</td>
<td>$150</td>
<td>$600</td>
</tr>
<tr>
<td>TOTAL INVESTMENT</td>
<td></td>
<td></td>
<td>$170,300</td>
</tr>
</tbody>
</table>

Sample investment for a 12-intersection corridor with In|Sync:HAWKEYE

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Unit Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>In</td>
<td>Sync:HAWKEYE</td>
<td>12</td>
<td>$35,000</td>
</tr>
<tr>
<td>Deployment Services</td>
<td>1</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Equipment Panel</td>
<td>12</td>
<td>$1,250</td>
<td>$15,000</td>
</tr>
<tr>
<td>Cabinet Cabling/Connection</td>
<td>12</td>
<td>$1,500</td>
<td>$18,000</td>
</tr>
<tr>
<td>Junction Box</td>
<td>48</td>
<td>$350</td>
<td>$16,800</td>
</tr>
<tr>
<td>Hawkeye Mounting Hardware</td>
<td>48</td>
<td>$600</td>
<td>$28,800</td>
</tr>
<tr>
<td>Shipping & Handling</td>
<td>12</td>
<td>$150</td>
<td>$1,800</td>
</tr>
<tr>
<td>TOTAL INVESTMENT</td>
<td></td>
<td></td>
<td>$510,400</td>
</tr>
</tbody>
</table>

Optional

- Hawkeye Context Camera per approach: 1, $750, $750
- Redundant/Fall-back Detection Integration: 1, $5,000, $5,000
- In|Sync: Hawkeye Spare Kit (Processor, 2 detection units and JBox): 1, $20,000, $20,000
- Pedestrian Integration: 1, $5,000, $5,000
- Keyboard & Monitor Kit: 1, $700, $700

Note: Other required items include: camera mounting hardware, recommend CAT 6e (CAT 5e could be used if necessary), 14-3 Power cable, Ethernet repeaters and injectors. These may be purchased from Rhythm or from another vendor. Components and quantities may vary depending on intersection and corridor landscape. Some components are optional or can be shared and do not need to be purchased for each intersection. For a precise quote, send us an email: info@rhythmtraffic.com

*Two-year hardware warranty, one-year software warranty, and one-year 24/7/365 remote technical support provided with system purchase.

All prices are in US dollars.
In|Sync is shipped with an included two (2) years hardware, one (1) year software warranty, and one (1) year 24/7/365 remote technical support.

For the sake of clarity, the options available from Rhythm Engineering, have been expressly described in the table below.

<table>
<thead>
<tr>
<th>Services / Goods</th>
<th>Term</th>
<th>Amount</th>
<th>Level of Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Warranty</td>
<td>1 year from Purchase</td>
<td>Free (Included in the product purchase)</td>
<td>Phone and Email Support; Software Upgrades</td>
</tr>
<tr>
<td></td>
<td>2 years from Purchase</td>
<td></td>
<td>Hardware Warranty</td>
</tr>
<tr>
<td>Optional Support Post Warranty</td>
<td>Annually*</td>
<td>$250</td>
<td>All Software Upgrades and License</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$750</td>
<td>Remote Technical Support:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Phone and Email</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Simple Config Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Software Upgrades</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Hardware Support</td>
</tr>
<tr>
<td>Hardware Warranty Extension</td>
<td>Annually*</td>
<td>$2,500</td>
<td>Hardware diagnostics, and repair or replacement</td>
</tr>
<tr>
<td></td>
<td>(available for up to a three year maximum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comprehensive Warranty**</td>
<td>Annually*</td>
<td>$3000</td>
<td>Includes hardware warranty, software license and remote technical support</td>
</tr>
<tr>
<td>Hourly Support Option</td>
<td>Upon Request</td>
<td>Hourly Rate Technician: $110</td>
<td>Remote Support:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hourly Rate Engineer: $150</td>
<td>• Phone and Email</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Simple Config Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Hardware Support</td>
</tr>
<tr>
<td>Field Services</td>
<td>Upon Request</td>
<td>Daily Rate $2000</td>
<td>On-site Visit:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Full Re-configurations</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Complex Config Changes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Training</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Troubleshooting</td>
</tr>
</tbody>
</table>

*Prices are given per intersection and are payable in advance. Accommodations can be made to prorate these fees, to be coincident with an agency’s budget cycle.

** The client can purchase all 3 components together – software, technical support and hardware warranty extension, at an all-inclusive price.
Take Action Now

Receive a FREE Arterial Audit

In 3 simple steps:

Step 1 ➞ Please, contact our team at 913.227.0603

Step 2 ➞ We will conduct detailed in-field audit of your Arterial

Step 3 ➞ You will receive a performance-metrics report of your Arterial with recommendations

913.227.0603

info@rhythmtraffic.com
InSync

RHYTHM
ENGINEERING

14019 W 95th St
Lenexa KS 66215
913-674-9846
info@rhythmtraffic.com

www.rhythmtraffic.com